Multi-aspect-streaming tensor analysis
نویسندگان
چکیده
Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor Analysis (ITA) that includes three variants called Dynamic tensor analysis (DTA), Streaming tensor analysis (STA) and Window-based tensor analysis (WTA). However, ITA restricts the tensor’s growth only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and allows the tensor to concurrently evolve through all modes. The new approach, which is developed for analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the histogram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexibility to the tensor analysis task. The empirical evaluation on various data sets from several domains reveals that MASTA is a potential technique with a competitive value against ITA algorithms. c © 2011 Published by Elsevier Ltd.
منابع مشابه
Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information
Low-rank tensor completion is a well-studied problem and has applications in various fields. However, in many real-world applications the data is dynamic, i.e., the tensor grows as new data arrives. Besides the tensor, in many real-world scenarios, side information is also available in the form of matrices which also grow. Existing work on dynamic tensor completion do not incorporate side infor...
متن کاملLot Streaming in No-wait Multi Product Flowshop Considering Sequence Dependent Setup Times and Position Based Learning Factors
This paper considers a no-wait multi product flowshop scheduling problem with sequence dependent setup times. Lot streaming divide the lots of products into portions called sublots in order to reduce the lead times and work-in-process, and increase the machine utilization rates. The objective is to minimize the makespan. To clarify the system, mathematical model of the problem is presented. Sin...
متن کاملA Review on Challenging Issues of Video Streaming Over Heterogeneous Wireless Networks
Video streaming in Heterogeneous Wireless Networks (HWN) has been the tendency of eye-catching feature and a massive impact for past few years among mobile users. It is being involved very huge amount of data in real time implementation and the significant aspect of bandwidth consideration should fluctuate for various kinds of networks that possess real-time multiple interface capability. In th...
متن کاملMACH: Fast Randomized Tensor Decompositions
Tensors naturally model many real world processes which generate multi-aspect data. Such processes appear in many different research disciplines, e.g, chemometrics, computer vision, psychometrics and neuroimaging analysis. Tensor decompositions such as the Tucker decomposition are used to analyze multi-aspect data and extract latent factors, which capture the multilinear data structure. Such de...
متن کاملEra of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions
Many problems in computational neuroscience, neuroinformatics, pattern/image recognition, signal processing and machine learning generate massive amounts of multidimensional data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide often a natural and compact representation for such massive multidimensional data via suitable low-rank approximations. Big data a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 89 شماره
صفحات -
تاریخ انتشار 2015